Making Recipes Readable Again

DesicN DocuMENT

Team Number: 12
Client: Mat Wymore
Advisers: Mat Wymore
Team Leader: Jack Paton
Meeting Scribe: Bret Knous
Design Facilitator: Vismay Gehlot
Test Facilitator: Luke Knous
Report Facilitator: Rithwik Gokhale
E-mail; sddec21-12@iastate.edu
Website: https://sddec21-12.sd.ece.iastate.edu

Revised: 4/20/2021

Development Standards & Practices Used

There are two standards that have been considered for this project; engineering
development standards and engineering coding standards. We shall be following the
Agile method using two week sprints for the engineering development standards and we
will be following the coding standards outlined by the below link. In addition, we shall be
adhering to the COVID-19 safety guidelines of Iowa State University.

Coding Standards:
https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/doc

umentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf

Summary of Requirements

Requirements:

e Must work on a typical mobile device/smartphone

e May be platform specific (e.g. Android), though cross-platform is ideal

e Interface must be user-friendly (typical user is expected to be viewing device
from roughly one meter away and using one non-primary finger to navigate)
Capable of loading/upgrading a recipe from an arbitrary URL
"Upgraded" recipes should load in 5s or less
Solution should not interfere with the source's revenue stream (e.g. ads should
still display)

e Should not require a user account (may be optional if it would help with desired
features)

e Should not require backend infrastructure

https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/documentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf
https://www.sos.state.co.us/pubs/elections/VotingSystems/DVS-DemocracySuite511/documentation/SD-DVSJavaScriptCodingStandards-5-11-CO.pdf

Applicable Courses from lowa State University Curriculum

1.

NSk v

COM S 309 - Software Development Practices

COM S 363 - Introduction to database management

COM S 227 - Introduction to Object oriented programming
COM S 228 - Data Structures

COM S 319 - Construction of User Interfaces

CPR E 388 - Android development

COM S 311 - Introduction to Algorithms

New Skills/Knowledge acquired that was not taught in courses

1.

Javascript

2. React Development

wokw

Jest Javascript testing frameworks
Project Management and team-work through remote interactions
Maintaining COVID-19 health standards

Table of Contents

1 Introduction

1.1 Acknowledgement

1.2 Problem and Project Statement

1.3 Operational Environment

1.4 Requirements

1.5 Intended Users and Uses

1.6 Assumptions and Limitations

1.7 Expected End Product and Deliverables
Project Plan

2.1 Task Decomposition

2.2 Risks And Risk Management/Mitigation

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

2.4 Project Timeline/Schedule

2.5 Project Tracking Procedures

2.6 Personnel Effort Requirements

2.7 Other Resource Requirements

2.8 Financial Requirements

Design

3.1 Previous Work And Literature

3.2 Design Thinking

3.3 Proposed Design

3.4 Technology Considerations

3.5 Design Analysis

3.6 Development Process

3.7 Design Plan

4 Testing

4.1 Unit Testing

4.2 Interface Testing

4.3 Acceptance Testing

O O 0 9 9 N OO N o &

| \\O TR NG T NG R NG R NG T NG T NG T N T S e e T o T e S S Sy S Y
o) e N T = == - BN BNe e) NN) W e) W S S NS R NS R

https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3znysh7
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2et92p0
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.4d34og8
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.26in1rg
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.35nkun2
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.44sinio
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.z337ya
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.1y810tw
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.1ci93xb
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3whwml4
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.qsh70q
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3as4poj
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.147n2zr
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.3o7alnk
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.23ckvvd
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.ihv636

4.4

Results

5 Implementation

6 Closing Material

6.1 Conclusion

6.2 References

List of figures/tables/symbols/definitions

Image 2.1 - Dependencies

Image 2.2 - Project Plan (Spring)

Image 2.3 - Project plan (Fall)

Table 2.4 - Time Allocation

Image 3.1 - screen mockups

Image 4.1 - Jest test example

Image 4.2 - Coverage from failed test

Image 4.3 - Failed test received vs expected
Image 4.4 - Html coverage from failed test
Image 4.5 - Unreached lines and error from failed test
Image 4.6 - Coverage from successful test
Image 4.7 - Html coverage from successful test
Image 4.8 - Fixed lines from successful test

26
26
27
27
28

https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.32hioqz
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.1hmsyys
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.41mghml
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.2grqrue
https://docs.google.com/document/d/1IPcMlH0Z3uIxGcMyLT1Jr5Wtpcxx-5ra/edit#heading=h.vx1227

1 Introduction

1.1. ACKNOWLEDGEMENT

Our client and advisor, Mat Wymore, is acknowledged for their contributions towards the
design of this project and remaining available to provide assistance as needed.

1.2. PROBLEM AND PROJECT STATEMENT

Online recipe blogs and websites are often confusing to understand and take a long time
to navigate. This project aims to reformat and modify what the user sees to make the
recipes more comprehensible and easier to navigate.

Our project plans to create a mobile app that makes these changes to a website based on a
provided URL. We want to accomplish this by creating a web scraper that will take all the
necessary details from the website and reorganize them into a clear and concise manner
that will allow users to easily identify ingredients and follow instructions for their desired
recipes.

We hope that by using this app users will be able to easily read and understand recipes
and make the cooking experience more enjoyable. In addition, we hope that recipes that
once might have been difficult to understand can become more straightforward, allowing
more users to utilize them.

1.3. OPERATIONAL ENVIRONMENT

Our project is intended for online use only and will not be expected to function without
access to the internet. Because of this, users may have different experiences with the
application depending on their GPS signals. The constraint of needing the internet, and a
decent internet connection, may have an effect on the location our application is used and
limit some potential users. In terms of environmental constraints, this app is expected to
work in the context of an active kitchen, so that will impact the Ul It should not require
the user to touch it too much and it should be easy to read. It should also be able to easily
flow into different sections of the recipe with minor interaction from the user.

1.4. REQUIREMENTS
Requirements:
e Must work on a typical mobile device/smartphone
e May be platform specific (e.g. Android), though cross-platform is ideal

Interface must be user-friendly (typical user is expected to be viewing device
from roughly one meter away and using one non-primary finger to navigate)
Capable of loading/upgrading a recipe from an arbitrary URL

"Upgraded" recipes should load in 5s or less

Solution should not interfere with the source's revenue stream (e.g. ads should
still display)

Should not require a user account (may be optional if it would help with desired
features)

Should not require backend infrastructure

Features:

1.5.

Hyperlink to images of different ingredients for visual assistance

Easy unit conversion for the different quantities of ingredients

Relevant substitutes/alternatives for specific ingredients in select recipes
Hyperlinks to online/nearby stores where rare/specific ingredients can be
purchased

Social and online sharing abilities for the recipes enhanced through the app
Ability to bookmark and save the recipes which have been enhanced by the app
for easy access in the future

Ability to scale recipes, as in multiply or divide ingredients proportionally.

Listing quantities of the different ingredients in the instructions part of the
webpage

INTENDED USERS AND USES

Based on the requirements which have been described above, this product will have a
wide range of end users. The primary objective of the product is to provide enhanced
recipes to individuals who would benefit from any of the features which have been listed
above. Therefore, it is safe to conclude that a large number of the end users for this app
will be individuals who are just getting into culinary practices or beginner cook,
However, due to the availability of specific features such as providing the option to

convert units or access visual representation of certain ingredients as well as the ability to

make this app compatible with virtually any online recipe, individuals who are

experienced with cooking may also be able to benefit from this app

1.6.

ASSUMPTIONS AND LIMITATIONS

Assumptions:

1)
2)
3)

The end product can be used globally with no restriction

The make and model of a preferred device will not affect app compatibility

There will be no limitations with access to the required software and APIs during
development

Note that these are all the assumptions which can be made before the beginning of the
development phase. Additional points will be added as and when potential roadblocks are
faced during the actual development of the application.

Limitations

1))
2)
3)

4)

5)

This app will require constant internet connection since the websites are
‘enhanced in real time’

Specific features in the app will also require constant GPS data to provide
shopping information for the specialized ingredients

A new instance of the app will be loaded at each use due to the lack of external
database (one of the functional requirements put forward by the client)

The end product will only work on mobile devices. Thus a web version of the
product will not be available.

The application will only work on english websites

As stated above in the assumptions section, these are all the limitations which can be
determined at this stage of the project. Additional technical limitations or modifications
to current limitations may be applicable once the team begins coding.

1.7.

ExrecTED END PRODUCT AND DELIVERABLES

Project Deliverables

1)

2)

3)

The final product which will be delivered to the client is a cross platform mobile
application which meets all the features and functional requirements which have
been listed in the above sections

Design and product mockups will be delivered to the client on a bi-weekly basis
once the development has begun

While the application will be designed for maximum ease of maneuverability by
the end user, an onboarding/user guide can be created and delivered with the end
product if required by the client. This project is yet to be finalised after further
discussions with the client.

2. Project Plan

2.1 Task DECOMPOSITION
1. Planning

2. Testing
a.

a.

Framework Selection - Our application needs to work on both Android
and I0OS, so we will be using a framework to determine what will work
best for us. The decision was between Flutter and React Native. We have
selected React Native for our purposes, due its larger support and more
established nature.

Feature Selection - The last part of our planning is picking which features
are most important and most feasible to create. The decided on features
are described below in the Feature Functionality section.

UI Design - To build a usable application interface we need a user focused
design. We will plan our design around the needs of a non-technical user,
using the application on their cellular device while cooking.

Testing Framework Selection - As we are developing in an agile
development style, we need to pick a testing framework for our app so we
can write tests before coding the app itself. We have chosen the Jest React
testing framework.

Unit Test Creation - Using the Jest framework, we will need to create unit
tests for our application and ensure full coverage of our code to ensure
completeness.

User Testing - After the app is fully functional tests will be conducted by
having possible users test the app and give feedback so we can make
improvements where it is needed.

Interface Functionality - Getting our interface up and running will be one
of our first priorities since it is the glue that holds everything together and
will be used for user testing.

Styling - After functionality is completed and tested we will make the
application more responsive and presentable to users by styling the

application with a combination of CSS stylesheet containers and React
props.

4. Feature Functionality

a.

Web Scraping - To display recipe website data correctly, we utilize web
scraping libraries such as jsonld.js to pull recipe data and display it to our
users.

Formatting Data - After the data is gathered from a users chosen website
we need to display it properly in a more readable format. We will code the
application to cut away extraneous information on the page such as
advertisements and blog content. We will also insert ingredient amounts
into the recipe direction section.

Data Modifying Features - There are several data modifying features we
will be adding such as an ingredient amount converter which will allow
users to convert units on the recipe from imperial to metric. Adding
hyperlinks for ingredient shopping and others. These can all be worked on
concurrently as they do not depend on each other.

Toggle Switch - To give users a choice in what they see, we will

implement a toggle switch to allow users to see the previously cut blog
content if they wish to see it.

10

O,

020,
o).

020,
NI

(D)

y

figure 2.1 - Dependencies

2.2 Risks AND Risk MANAGEMENT/MITIGATION

Planning - While we might have missed something in our planning process it will most
likely be able to be fixed at a later time. Rating: 0.1

Testing - It is possible that bugs and other issues may escape our testing when our
application is used on a wide variety of websites. 0.7

Mitigation Plan: The best way for us to deal with this is to test our application on as
many different websites as possible, making sure it is tested on the largest and most
commonly used websites. As long as it works on the websites that get the majority of

11

the traffic it will not be as big of an issue if it doesn’t work well on small obscure
websites that few people use.

UI - The risks here are that the app might not be suitable for use in the kitchen or to
people with disabilities like poor eyesight or color blindness. Rating: 0.5

Mitigation Plan: We will do what we can to make the app as readable as possible by
using colorblind safe colors and making the font as large and readable as possible.

Feature Functionality - While it is possible for some of the libraries we use to depreciate
otherwise have issues, this is unlikely and as long as our application is coded well the
risks here should be minimized. Rating: 0.3

URL Safety - It is possible that a URL is not a valid URL, could redirect the user to an
unintended site, or contain hidden JavaScript. Our project is a local application and our
assumption is the user knows what is on the site they are trying to scrape. Therefore, this
should not be a large issue. Rating: 0.3

2.3 PrROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestone 1 : All unit tests are created

- Test cases are created and work as intended for the application’s ability to
properly pull recipe data from a given url and format it correctly.
- Test cases are created for the applications secondary functions as well.

Milestone 2: Main functionality completed

- The application's ability to retrieve and reformat data is implemented and can be
tested using the already existing unit tests.

Milestone 3: Application is functional on major recipe websites

- The application is able to perform its main functionality on major recipe websites
with 90% success rate.

Milestone 4: Full Functionality

- All features are implemented
- All unit tests are passed
- App is fully functional on 90% of recipe websites

12

2.4 ProJECT TIMELINE/SCHEDULE

It is important to have a realistic and detailed project plan to ensure that all the tasks are
completed on time and the dependencies/hierarchy of the different project phases are
clearly defined. The project plan has been developed in the form of a Gantt chart which
has been pasted below. Note that the Gantt chart has been divided up into two images for
easy readability.

15-Jan 30-Jan 15-Feb 28-Feb 15-Mar 30-Mar 14-Apr 29-Apr 14-May

Frontend app development
Backend app development
Algorithm Design

figure 2.2 - Project Plan (Spring)
Development . Testne | submission

Break 15-Aug 30-Aug 14-Sep 29-Sep 14-Oct 29-Oct 13-Nov 28-Nov 13-Dec

-—__-

figure 2.3 - Project Plan (Fall)

Frontend app development
Backend app development
Algorithm Design

As it can be seen from the above images, a clear project plan has been developed by the
team which accounts for the different project phases and the major milestones which need
to be met before the completion of a specific phase of the project. The main project itself
has been divided into 4 phases; planning, development, testing and submission.
Furthermore, each of these project phases have smaller milestones and deliverables
associated with them. Since the different phases have been clearly color coded, it is also

13

easy to identify the different project dependencies. For example, in fig. 2.2, it is indicated
that unit testing cannot take place until test strategy has been defined.

As explained further below in the document, initial experimental development work will
begin at the end of this semester and throughout the summer break. As indicated in the
project plan above, this will allow the project team to familiarize themselves with the
coding environment and gain the necessary technical knowledge. All major modules will
be completed by September 14th so that testing can begin. The project plan lists that all
testing work is completed by November 14th so that the last two weeks can be dedicated
to submitting the app and completing any associated documentation.

Note that the project will be managed using an Agile form of software management but
this will be only during the development and testing phase. Due to the number of
dependencies between the different phases, the overall project will follow a waterfall
approach of software project management. This will allow the team to adequately plan
before beginning any implementation or testing. Therefore the Gantt chart clearly shows
the waterfall approach taken in this project. Within the 2 month development period, we
will employ an Agile form of management with 2 weeks sprints and an MVP due at the
end of each cycle.

2.5 ProOJECT TRACKING PROCEDURES

As detailed below in the development processes, we will be following an Agile form of
software project management with 2 weeks sprints and a MVP due at the end of each
cycle. The work will be broken down into tasks which will be selected for sprints from
the backlog. The following technologies and project tracking processes will be adopted
for our project:

1) Discord - This will be our IM channel for the project. Since all the team members
are more used to the environment and features of Discord, we will be using this as
our primary mode of communication with the team and the client (as an
alternative to Slack).

2) Trello - Trello will be mainly used to manage the 2 weeks sprints during
development. Tasks (tickets) will be assigned to trello boards for each project
team member which have to be regularly updated and completed for the MVP to
be presented at the end of the two week sprints.

3) Github - Github will be used as our primary project code repository. This is a code
management software which will allow multiple developers to collaborate on the
project simultaneously. Github will also provide the team and the client to keep
track of code commits made by different team members to get a better
understanding of the overall project progress.

14

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Time Required
Framework Selection 4 hrs
Feature Selection 10 hrs

UI Design 10 hrs
Testing Framework Selection 10 hrs
Unit Test Creation 60 hrs
User Testing 20 hrs
Interface Functionality 40 hrs
Styling 40 hrs
Web Scraping 80 hrs
Formatting Data 80 hrs
Data Modifying Features 50 hrs
Toggle Switch 10 hrs
Total Time 414 Hours

figure 2.4 - Time Allocation

As seen in the table above the early stages of the project, namly the planning tasks, will
add up to about 44 hours. The testing of the application is estimated to take 80 hours, and
the brunt of the development will take 290 hours if done consecutively. However some of
the tasks in the development stages can be split up amongst the team members and
accomplished concurrently so it will actually take less than 290 hours in practice.

2.7 OTHER RESOURCE REQUIREMENTS

Since our main project deliverable is a mobile application, there are minimal external
resource requirements for this project to be successfully completed. Since all the
development work will be completed through computers, the only additional hardware
required for this project would be smartphones to test the end product on. While coding
the different modules of the app, testing will take place through Android and iOS

15

emulators. But to ensure thorough system testing, the app will be loaded on an Android
and 10OS smartphone after completing development to get a proper idea of the app’s user
experience.

2.8 FINANCIAL REQUIREMENTS

There are no known financial requirements for this project at this stage. Since the project
team members own Android/iOS smartphones, final system testing can be completed
through personal smartphones. If there are any challenges with phone availability or
security concerns, we will be using the test phones available through the Computer
Science and Engineering department. These phones can be loaned for project work
through an established program offered by the University itself.

3 Design

3.1 Previous WoRK AND LITERATURE

Detailed research was conducted by the team members during the design phase of the
project specifically into pre-existing solutions/products in the market which work with
the same topic as our project. While we were not able to find any applications which
provide the same service as our product, there are a number of applications in the market
which focus on improving the culinary experience with regards to finding and saving
recipes from across the internet.

Therefore, while addressing the previous works and literature for this project, a direct
comparison will not be made with another app which already exists in the market.
Alternatively, the functionality, the strengths and weaknesses of the different products
will be analyzed so that appropriate design decisions can be made during the
implementation of our application.

1) Paprika

The main objective of this app is to provide users with the opportunity to save recipes
from different web sources in one location for easy access. This app provides users with a
built in web browser and the ability to bookmark any favorite recipes which they come
across. The main strength of this application is that it provides users with the option to
save all of their favorite recipes in one easy to access location. But beyond this main
feature, the app does not provide users with any other options to further enhance the
recipes which they are viewing. Our proposed solution will provide users the option to

16

save recipes on the app while also providing other features to ‘enhance’ the recipes which
they find on the web.

2) BBC Good Food

The main selling point for this app is the wide variety of recipes available which have
been created by industry professionals and reviewed by thousands of users from across
the world. This provides the end user of this app with a well curated range of recipes with
feedback from other users to improve the overall cooking experience. Furthermore, users
are able to bookmark/save their preferred recipes on the phone for easy access in the
future. But on the other hand, this app does not specifically offer any other features for
the users to customize the recipes to their needs and view only the relevant information.
This would be the main difference between BBC Good Food and our proposed
application.

3) Tasty

Tasty uses a crowdsource approach to its recipes where users are able to actively
comment on the different sections of the recipe and offer suggestions and tweaks which
can be adopted by others who view the same recipe in the future. This allows the app to
provide a wide range of recipes with essential feedback and reviews provided by other
users of the app. While this app focuses on improving the recipes which are currently
available on the web, the approach taken by Tasty is very different from our proposed
solution which will not offer users the ability to rate and review recipes but provide them
with machine generated improvements such as easy unit conversion, improved
information layout and relevant visual aid.

3.2. DESIGN THINKING

During the design phase of the project, as a team, we focused on determining the most
effective product as the solution for the problem presented by our client. Over multiple
brainstorming sessions, we considered different options such as websites plugins
extensions. After thorough evaluation, we came to the conclusion that a mobile
application would be the best option. This option would provide the service to the largest
population of users since smartphones have become a major part of modern day living.
Furthermore, smartphones also come with preinstalled settings which are designed to
improve the user’s app experiences. The next step in the define phase was to brainstorm
the different features which could be included in our app to provide the users with an
‘enhanced’ recipe. During this phase, the team conducted research on different existing
apps in the market and discussed different services which can be provided by the app and

17

can be translated into features. And the final step of the define phase was to start coming
up with different UI mockups for the app and create a draft of the system design for the
application. During this process, mockups for the home screen and the recipe screen were
developed by the team to get a better idea of the placement of the different buttons and
features on the app screens.

During the ideate phase of the project, our main goal was to finalize the project
requirements (the features for our application), discuss the non functional requirements of
the project and conduct sufficient technology research so that we do not face many
roadblocks during the actual implementation of the app. And the last step of the ideate
phase was to finalize the design of the product in terms of system diagrams and Ul
mockups. This would adequately prepare us to begin development of the application in
the next phase of the project.

3.3. PropPOSED DESIGN
During the design phase of the project, our team had the following objectives to
complete:

- Identify all the functional and nonfunctional requirements
- Develop mockups of app Ul
- Conduct research on technologies which will be used for this project

Before creating the design document for this project, the team finalized on the
requirements (seen in chapter 1). Mockups were also developed for the home page and
the recipe page of the mobile application. The objective of these mockups were to
provide the team with an idea of how the app will look from a design perspective and to
spark conversations between the team members and the client on where the different
components would go on each of the screens and the overall structure of the app. The
following mockups are for the home screen and the recipe screens:

18

—

o Units Portion Font Ads
p . \
f_\ App title/logo >

[Text box to enter website URL]

This box will contain the information from
the recipe with the relevant modifications
and hyperlinks for the images of the
different ingredients

This space will centain the

app description, features

and simple instructions en
haow to use the app

Image 3.1 - screen mockups

As seen above, the first mockup is of the home screen/URL screen. This will be the first
page which opens up when the app is launched. Since our app prioritizes ease of use, the
home screen will have very easy to understand structure. This page will contain the
title/logo, a text box for the user to enter the recipe website URL and a simple set of user
instructions on how to navigate through the app. The second screen mockup is of the
actual recipe page itself. This page will contain the enhanced recipe once the app has
processed all the information from the original website. A majority of the screen will be
taken up to display the recipe information. This screen also contains a number of button
components at the top to use the different features provided by our app. These include the
option to change units, change portion sizes, enable/disable advertisements and change
the font to make it easy to read from long distances. As mentioned earlier, these mockups
were designed to meet all the feature requirements of the app which were finalized with
our client during the initial brainstorming sessions of this project.

The design proposed above was developed after careful consideration on how they could
help meet the functional requirements of this project which were provided by the client.
As it can be seen in the above images, this program is designed to run on a standard iOS
and Android smartphone. Therefore, it follows the basic design principles of mobile
applications. Furthermore, another major requirement listed in chapter 1 is ease of use
with regards to the UIL. Hence, the different components on the screen have been labeled
clearly to ensure that users are able to easily navigate through the app while cooking or in
the kitchen.

19

3.4 TECHNOLOGY CONSIDERATIONS

Since it was determined that we will be developing a cross-platform mobile application
which can function on both iOS and Android devices, we believe that using React is the
most appropriate option. Developing the app through React ensures a smoother
development process and reduces the additional effort of optimizing the app for 10S and
Android devices. While independent development for the two OS would provide users
with more features and an overall better app experience but this would double the work
for the team and increase the overall implementation time since we would have to learn
different software and libraries which are native for Android and iOS development.
Additional research is currently underway on different development platforms which can
be used and APIs and libraries which are available for our use during the implementation
of the app.

Testing is going to be a major part of this project. Before launching the application it is
important to conduct a number of different tests to ensure that there are no logical errors
or UI bugs in the code. Since the app is being developed with React, we will also be
using a native Javascript testing framework called Jest. The use of this library will
provide us with the option to conduct unit tests and system integration tests on the app
and ensure that the overall app experience remains smooth.

3.5 DESIGN ANALYSIS

So far in the project, the proposed design plan is serving the purpose effectively. The
team has been able to complete all the tasks on time and the project schedule is being
closely followed. One of the small limitations of the proposed design plan is that due to
the lack of development work being done in phase, the team is unable to fully prepare for
any technical challenges which we might encounter while coding the application. While
the current proposed design meets all the functional requirements provided by the client,
there may be alterations to the design during project implementation due to any technical
limitations the team might face. One potential solution to this problem in the design
process could be allowing the team to experiment with partial implementation of different
screens or backend systems during the break in order to ensure that everyone is
comfortable with the development environment.

20

3.6. DEVELOPMENT PROCESS

We will be using an Agile software development process for the scope of this project. We
will have 2 week sprints throughout the development period and each meeting, new tasks
will be added from the backlog which will be curated at the beginning of the
implementation phase. A minimum value product (MVP) will be presented to the client
and the rest of the team at the end of the two week sprints where items from the backlog
are completed. This development process will ensure that the client and the team
members have a realistic idea of the project progress and therefore will be able to better
plan out the next steps which need to be completed in the upcoming sprint cycle.

3.7. DESIGN PLAN

The team initially started the design process by creating mockups of the different screens
in the app to get a better understanding of the placement of the different components in
the app. The next step of the design process would be to develop simple Ul mockups
through Javascript development and display it to smartphone emulators. This step will
provide the team and the client with a realistic idea of how the UI will be implemented
for this project and any changes can be made based on the feedback received from the
client. Mock up implementation of the databases will also be completed before main
project implementation so that we have a better understanding of the backend logic
required for this project.

Next semester, the majority of the time will be spent on developing an efficient web
scraping algorithm so that only the relevant information is collected from the recipe
websites, enhanced and displayed in the app. The team expects this process to take the
longest in the overall project since we will have to train models to collect only the most
essential data from the recipe websites and then display it in the app in an effective
manner. Once this process has been completed and tested with the Ul, additional system
testing will be done in the app to ensure that there are no bugs within the code.

4 Testing

1. Our project will need unit tests for modules, integrity tests for interfaces, acceptance
tests for all functional and nonfunctional requirements, black and white box testing for
end functionality and performance, and security testing.

2. The following lists items needing to be tested and the types of tests we plan to use.
a. Units: Unit Conversion for measurements, Retrieving Data from URL,
Scaling Measurements, Ensuring URL is safe.

21

b. Interfaces: Between Ul and Retrieving Data from URL, Between
Retrieving URL and Ensuring URL is safe, Between Ul and Scaling
Measurements/Unit Conversions.

c. Acceptance: All the functional and non-functional requirements and any
features that have been implemented. This includes, but is not limited to,
loading a recipe from an arbitrary URL, solution should not require a user
account, and solution should be user-friendly.

d. Black Box: Ensure end functionality is working properly. Such as our
functions for retrieving the website data from the URL are doing so.

e. White Box: Ensure the flow of input and output of the code inside our
functions is correct and to find improvements in design.

f. Security: URL retrieved should be valid, preventing redirect URLs, and
checking for hidden javascript in URLSs.

3 & 4. Below is an example of a test case we have defined, designed, and developed. The
test below is part of a test suite designed to make sure the function we wrote to convert
from units in the metric system to the imperial system is working as intended. This test
has the goal to make sure the function converts properly between mL, specifically its
abbreviation, to an appropriate unit in the imperial system. These tests were written in
JavaScript in Visual Studio and tested using Jest, a native testing framework for
JavaScript. The example below has eight different test cases. The first test case
demonstrates converting 10 mL to imperial. This is done by passing a value of 10 and a
string of mL to our function. Our expectation is that the result will be 2 tsp.

Image 4.1

Eltest(‘properly converts mL to imperial’, () =» {
expect(convertToImperial(L'}).toStrictEqual([2, 'tsp
expect({convertToImperial(‘mL"}).toStrictEqual([1.5,
expect({convertToImperial(» 'mL"}).toStrictEqual([4.5,
expect(convertToImperial(» 'mL'}}.toStrictEqual([1,

expect(convertToImperial(. 'mL"}).toStrictEqual([J/ 24@8), "cups'])
expect(convertToImperial(‘mL"}).toStrictEqual(['pt' 1)
expect(convertToImperial('mL")).toStrictEqual([2 1)
expect(convertToImperial(B, 'mL"}).toStrictEqual([1,

5. We ran the tests in the Jest framework by running our suites. We ran our suites with the
--coverage tag to provide more insight to how our functions are behaving, such as what
percentage of lines are being reached by our tests.

6. Below are the results we found on our initial run of our test suites. We discovered that
one of the tests was failing in the convert to imperial suite, the failed test was part of the

22

properly converts mL to imperial test that we outlined above, and the convert to imperial
suite did not have full statement, branch, and line coverage. Jest provided an html which
showed us the specific lines which were never reached by our code by highlighting them
red, which was helpful in determining where our problem existed.

Image 4.2

Developer PowerShell

- Developer PowerShell = 7] o

scale.test. js

Test Suites:

Tests:] 17 total
Snapshots:

Time:

Image 4.3

convertToImperial.test. js

toStrictEqual

test(,) = {

expect(convertToImperial(:)} .toStrictEqual ([
expect(convertToImperial (135, })-toStrictEqual([4.5,
expect(convertTolmperial (246, })-toStrictEqual([1,

23

Image 4.4

87.7% Statements 1e7/122 B89.44% Branches 127/1a2 100% Functions s/3 87.7% Lines 1e7/122
Press n or j to go to the next uncovered block, b, p or k for the previous block

File « Statements Branches Functions Lines

convertTolmperial js T7.27% | 51/66 78.97% | 55/70 100% | 11 | 77.27% | 51/66
convertToMetric.js] 100% | 54/54 100% | 7272 100% | 11 100% | 54/54
scale s] 100% 2i2 100% 0/0 100% | 11 100% 2/2

7. After some digging, we found that we were converting the measurement we passed to
the function to lower case but trying to compare it to mL with a capital L. To fix this we
changed that L to be lower case. The picture below shows where this was in our code.

Image 4.5

function convertToImperial{currentWalue, currentMeasurement) {

gal to

32x B if (currentMeasurement.tolLowerCase().normalize() ==@nm‘malize-:}} {
if {currentValue <= 18) {

LU LSd S

L g

[+ T .

return [currentValue / 5, "tsp']

8. After making the changes and re-running our tests, we found the failed test now passes
and we have complete coverage for the statements, branches, and lines. In addition, the
html no longer has red lines indicating part of the code was never reached.

24

—~+ Developer PowerShell A © |

scale.test.js
convertToImperial.test.js
convertToMetric.test.js

Test Suites: s 3 total
Tests: i 17 total
Snapshots:

Time:

Image 4.7
100% Statements 1227122 100% Branches iaz/iaz 100% Functions 3/3 100% Lines 122/122
Press 11 or jto go to the next uncovered block, b, p or k for the previous block

File = Statements Branches Functions Lines

convertTolmperialjs | [N NN 100% | 66/66 100% | 70/70 100% | 11 100% | 66/66
convertToMetric_js | 100% | 54/54 100% | 72/72 100% | 11 100% | 54/54
scale js | 100% 2{2 100% 0/0 100% | 11 100% 2/2

Image 4.8

1 function convertToImperial(currentValue, currentMeasurement) {

3 39x if (currentMeasurement.tolowerCase().normalizel) ===nrmalizei)) 1
4 Bx if {currentValue <= 18) {

1x return [currentValue / 5,

£l

9. The above process illustrates one example of how we plan to test our team’s JavaScript
code for this project. Our team will continue to use Jest to help ensure our code is fully
tested. This is just an example for our unit testing but other types of testing might use a

25

different framework or program other than Jest. Those details will be established when
we have started that phase of our testing.

4.1. Unit TESTING

The following units will be tested in isolation; unit conversion for measurements,
retrieving data from a URL, scaling recipe measurements, ensuring the URL is safe, and
displaying UI elements.

Unit Conversion for measurements: Our plan is to have a function that has the ability to
convert recipe amounts between metric and imperial units and vice versa.

Retrieving data from a URL: Our plan is to have a function that takes an URL as input
and returns back the data from the website the URL points to.

Scaling Measurements: Our plan is to have a function that can scale the amounts needed
for each ingredient based on how many batches the user plans to make.

Ensure the URL is safe: We will make a function that examines the URL and detects
whether it is safe or not.

4.2. INTERFACE TESTING

Our compositions of two or more interfaces will be tested through UI observations
resulting from user input. We plan to use a native program of React Native called React
Native CLI Quickstart, an Android emulator, and an IOS emulator to do so.

4.3. ACCEPTANCE TESTING

Once all of our tests pass, we will create a presentation for our client that demonstrates
and explains how all the requirements are being met. The client will also test the app
themselves through hands-on interaction. After this, we will have our client check off the
requirements they feel have been met.

4.4, RESULTS

We found a failure when trying to compare a string we had converted to lowercase with
one that we had set to have an upper case letter. After this problem was fixed, we
successfully had created functions to scale batches and covert ingredient measurements
between the metric and imperial systems.

26

We have learned we will need some way to retrieve the ingredient’s original unit because
we cannot perform a conversion without it. For example, if we are currently in teaspoons,
then we need to know this information in our conversion method so we can multiply by 5
to get to mL. This means we will have to add to our current design to include some way
to not only retrieve the value to be converted but to retrieve the unit it is currently in as
well.

5 Implementation

Since our project is a mobile application, a large amount of the time this semester was
spent on finalizing the different features and requirements for the app. Additionally, since
successful mobile applications are known to have a very smooth user experience, a
significant amount of time was also spent on discussing and finalizing the app structure
and developing mockups of the different screens which the users would see. But as the
semester comes to an end, the team has fully understood the requirements for this project,
conducted sufficient technical research on the different technologies which will be
utilized to develop this app and has finalized the UI designs for the app.

A majority of the technical implementation will be taking place during the second
semester of this project but to ensure that everyone in the team is adequately prepared for
the tasks, a small amount of work will also be done during the summer break. First, the
front end developers of the team will create multiple mockups of the app using Javascript
so that minimal time is spent making design decisions next semester. In addition to this,
we will also aim to have all group members a little more familiar with REACT so that
there’s no need to take time out of the school year to try and learn it.

During the fall semester, the main objective will be to fully implement the app which was
designed this semester. The team will be divided into UI design (frontend) and backend
development which will be responsible for data management and the coding of the web
scraping algorithm which will collect all the relevant information from the recipe
websites, enhance it to fit the requirements of the app and then display this information
using the decided structures. A considerable amount of time will also be dedicated to
testing the app to ensure that there are no logic errors in the code and there is seamless
integration within the app UL

For a more detailed view of the project plan for the upcoming semester, visit section 2.4
of this document which contains the Gantt chart for the project. We strongly believe that
this plan is feasible since all the design and features work has been completed this
semester and all the effort will be on implementing the app successfully next semester.

27

6 Closing Material

6.1 CONCLUSION

The introductory phase of this project consisted of us identifying the problem statement
and brainstorming an initial plan of action that we would use as a solution for the issue at
hand. We identified our target audience as well and decided to choose a platform that
would allow the widest range of users to access our final product. We chose to go with a
mobile application for the end product as we believe this would allow people to quickly
and easily get the information they need without taking too much space in the kitchen.
We identified that the end users would most likely be someone who was interested in
cooking, whether they’re beginners or experienced in the culinary field already.

The design phase of this project was one of the more time intensive parts of the project
since the team had several discussions on the structure and UI designs for the app. By the
end of this phase, we were able to create realistic mockups of the URL screen and the
recipe screen which provided the client and everyone in the team with an idea on how the
end product might look like next semester. In this phase of the project, we also looked at
pre existing apps in the market which provide similar services to the culinary industry.
Research into ‘competing’ products gave us an opportunity to evaluate the features which
the app plans on offering to the users and how they would be more beneficial compared
to what is already available on the app stores. And finally, the team also had a chance to
finalize the design plan for the upcoming semester. Since the app requirements, features
and Ul mockups have now been completed, a majority of the time during the second
semester of this project will be spent on implementing the app itself. The project team
will be divided into smaller groups to work on the frontend components and also write
the web scraping algorithms which will be collecting the data from the original recipe
websites.

For the testing part of the project we have started with unit tests for some JavaScript
functions including scaling ingredient quantities and converting between metric and
imperial units. After performing research, our team settled on using Jest to test our
JavaScript code and we plan to continue using the framework for the remainder of the
project. Jest allows us to write tests for our functions and see if our code passes them all.
In addition, Jest allows us to view an html form with additional information regarding
code coverage. Using Jest, our team will be able to ensure our code passes all the
required tests and all of the code we write is being covered by our tests. For other forms
of testing such as interface testing, our team will research ways to perform such tests as
our project draws closer to needing them.

As detailed in the implementation plan above, the majority of our development work will
be completed in the second semester of this project. Based on the information collected

28

during the requirements gathering and design thinking phases, the team will be divided
into smaller groups to work on the Ul, frontend logic and any backend algorithms which
support the functionality of the app. Members will be expected to familiarise themselves
with REACT development environments so that there are minimal roadblocks next
semester. Testing will also play a significant role in the implementation phase of the
project where unit tests and system integration tests will be conducted after the
completion of each module to ensure that there are no bugs and the app runs smoothly.

6.2 REFERENCES

[1] Amit Thinks. How to run JavaScript on Visual Studio Code. (Oct. 13, 2020). [Online
Video]. Available: https://www.youtube.com/watch?v=7_G86SKXP3s. Accessed:
Apr. 24, 2021.

[2] Ben Awad. Running Create React Native App on Your Phone. (Dec. 31, 2017).

[Online Video]. Available: https:/www.youtube.com/watch?v=mhoiw{fShSnE.
Accessed: Apr. 24, 2021.

[3] Jordan Walke. “React Native Documentation” React Native https://reactnative.dev/
Accessed: Apr. 25, 2021

[4] LevelUpTuts. React Native For Everyone Preview. (June 5, 2017). [Online Video
Playlist]. Available:

https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hH
BS5. Accessed: Apr. 24, 2021.

[5] “Setting up the development environment - React Native,” React Native, Mar. 12,
2021. [Online]. Available: https://reactnative.dev/docs/environment-setup. Accessed:
Apr. 24, 2021.

[6] Web Dev Simplified. Introduction To Testing In JavaScript With Jest. (Sep. 24,
2019). [Online Video]. Available: https://www.youtube.com/watch?v=FgnxcUQ5vho.
Accessed: Apr. 24, 2021.

29

https://www.youtube.com/watch?v=Z_G86SKXP3s
https://www.youtube.com/watch?v=mhoiwfShSnE
https://reactnative.dev/
https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hHB5
https://www.youtube.com/playlist?list=PLLnpHn493BHG30qU2Rw403x6w7XP8hHB5
https://reactnative.dev/docs/environment-setup
https://www.youtube.com/watch?v=FgnxcUQ5vho

